Sains Malaysiana 54(2)(2025): 333-341

http://doi.org/10.17576/jsm-2025-5402-02

 

Geochemistry of Permian Kuantan Granite Peninsular Malaysia: Implication to Highly Fractionated I-Type Granite

(Geokimia Permian Granit Kuantan Semenanjung Malaysia: Implikasi kepada Granit Jenis I Berfraksinasi Tinggi)

 

AZMIAH JAMIL1, AZMAN A. GHANI1,*, AHMAD FARID ABU BAKAR1 & MOHD ROZI UMOR2

 

1Geology Department, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Geology Program, Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 9 May 2024/Accepted: 7 November 2024

 

Abstract

The 262.0 ± 1.7 Ma Kuantan granite of the Peninsular Malaysia Eastern Belt comprises coarse-grained biotite monzogranite and syenogranite. The granite marked the earliest subduction-related magmatic intrusion during the collision of the Sibumasu and Indochina blocks. This paper reported whole-rock geochemical data of Kuantan granite to constrain the magma source and petrogenesis of the granite. The Kuantan granite stands out due to its elevated SiO2 concentration, surpassing 72%. It also exhibits high levels of K2O, ranging from 4.51% to 6.5%. The A/CNK value falls between 1.01 and 1.08, and there are notable negative Eu anomalies that range from 0.05 to 0.27. Together with other older fractionated I-type granites in the easternmost Peninsular Malaysia, they formed distinct granitic facies from the eastern Belt granite proper. This study suggests that the Permian highly fractionated I-type granites resulted from the partial melting of intra-crustal mafic rocks, while the primitive I-type granitic melts underwent significant fractional crystallization.

 

Keywords: Eastern belt granite; fractionated I-type granite; Kuantan granite; Peninsular Malaysia granite

 

Abstrak

Granit Kuantan berumur 262.0 ± 1.7 juta tahun terletak di Jaluran Timur Semenanjung Malaysia terdiri daripada monzogranit dan syinogranit butiran saiz pertengahan ke sangat kasar. Granit ini menandai magma penerobos yang terawal terkait dengan subduksi semasa perlanggaran antara blok Sibumasu dan Indochina. Kertas ini melaporkan data geokimia batuan granit Kuantan untuk merungkaikan asalan magma dan proses kejadiannya. Granit Kuantan dibezakan oleh ketinggian kandungan SiO2nya melebihi 72%. Ia juga menunjukkan aras ketinggian K2O daripada 4.51% hingga 6.5%. Nilai A/CNK berada antara 1.01 dan 1.08 dan terdapat anomali Eu negatif yang ketara pada julat dari 0.05 ke 0.27. Bersama dengan granit tua jenis I berfraksinasi di bahagian paling timur di Semenanjung Malaysia yang lain, mereka membentuk fasis granit yang berbeza berbanding dengan granit Jaluran Timur berhampiran. Kajian ini mencadangkan bahawa granit Permian jenis I berfraksinasi tinggi ini dihasilkan daripada batuan mafik di dalam kerak yang dicairkan separa dan kemudiannya granit jenis I yang lebih tua ini mengalami perubahan fraksinasi habluran yang ketara.

 

Kata kunci: Granit jaluran timur; granit jenis-i berfraksinasi; granit Kuantan; granit Semenanjung Malaysia

 

REFERENCES

Cao, J., Yang, X., Du, G. & Li, H. 2020. Genesis and tectonic setting of the Malaysian waterfall granites and tin deposit: Constraints from LA-ICP (MC)-MS zircon U-Pb and cassiterite dating and Sr-Nd-Hf isotopes. Ore Geology Reviews 118: 103336.

Chakraborty, K.R. 1977. Olivine nephelinite and limburgite from Kuantan, Pahang. Warta Geologi 3: 1-5.

Chappell, B.W. 1999. Aluminum saturation in I- and S-type granites and characterization of fractionated haplogranites. Lithos 46: 535-551.

Chappell, B.W. & White, A.J.R. 1992. I- and S- type granites in the Lachlan fold belt. Transaction Royal Society Edinburgh Earth Sciences 83: 1-26.

Chappell, B.W. & White, A.J.R. 1974. Two contrasting granite types. Pacific Geology 8: 173-174.

Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F. & Mallick, D.I.J. 1992. The Granites of the Southeast Asian Tin Belt. London: His Majesty’s Stationery Office (HMSO).

Du, G., Yang, X., Cao, J. & Aziz, J.H.A. 2020. Genesis and timing of the Sungai Lembing tin deposit in Pahang, East Malaysia: Constraints from LA-ICP-MS zircon and cassiterite U-Pb dating, geochemical compositions and Sr-Nd-Hf isotopes. Ore Geology Reviews 119: 103364.

Gardiner, N.J., Searle, M.P., Morley, C.K., Robb, L.J., Whitehouse, M.J., Roberts, N.M.W., Kirkland, C.L. & Spencer, C. 2018. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Research 62: 27-60.

Ghani, A.A. & Taib, N.I. 2007. New trace, major and rare earth element data for the Early Pleistocene alkali olivine basalts and olivine nephelinites from Kuantan, Pahang: Plume-related rift volcanics or wrench-related crustal extension. Bulletin of the Geological Society of Malaysia 53: 111-117.

Ghani, A.A., Lo, C.H. & Chung, S.L. 2013. Basaltic dykes of the eastern belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. Journal of Asian Earth Sciences 77: 127-139.

Ghani, A.A., Hazad, F.A., Jamil, A., Quek, L.X., Wan Ismail, W.N., Chung, S.L., Lai, Y.M., Roselee, M.H., Islami, N., Nyein, K.K., Hassan, M.H.A., Mohd Farid, A.B. & Umor, M.R. 2014. Permian ultrafelsic A-type granite from Besar Islands group, Johor, Peninsular Malaysia. Journal Earth System Science 123: 1857-1878.

Ghani, A.A., Searle, M., Robb, L. & Chung, S.L. 2013. Transitional I-S type characteristics in the Main Range Granite, Peninsular Malaysia. Journal of Asian Earth Sciences 76: 225-240.

Haile, N.S., Beckinsale, R.D., Chakraborty, K.R., Hanif, H.A. & Tjahjo, H. 1983. Palaeomagnetism, geochronology and petrology of the dolerite dykes and basaltic lavas from Kuantan, West Malaysia. Bulletin of the Geological Society of Malaysia 16: 71-85.

Hutchison, C.S. 1983. Multiple Mesozoic Sn-W-Sb granitoids of Southeast Asia. In Circum Pacific Plutonic Terrane, edited by Roddick, J.A. Colorado: Geological Society of America. pp. 33-60.

Hutchison, C.S. 1973. Tectonic evolution of Sundaland: A Phanerozoic synthesis. Bulletin of the Geological Society of Malaysia 6: 61-86.

Jamil, A., Ghani, A.A., Zaw, K., Osman, S. & Quek, L.X. 2016. Origin and tectonic implications of the ~200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. Journal of Asian Earth Sciences 127: 32-46.

Liew, T.C. 1983. Petrogenesis of the Peninsular Malaysian granitoid batholiths. PhD thesis. Australian National University, Canberra, Australia (Unpublished).

Liew, T.C. & McCulloch, M.T. 1985. Genesis of granitoid batholiths of Peninsular Malaysia and implication for models of crustal evolution: Evidence from a Nd-Sr isotopic and U-Pb zircon study. Geochimica et Cosmochimica Acta 49: 587-600.

Liew, T.C. & Page, R.W. 1985. U-Pb zircon dating of granitoid plutons from the West Coast Province of Peninsular Malaysia. Journal of the Geological Society 142: 515-526.

Liu, L., Hu, R.Z., Zhong, H., Yang, J.H., Zhang, X.C., Fu, Y.Z., Mao, W. & Tang, Y.W. 2020. Petrogenesis of multistage S-type granites from the Malay Peninsular in the Southeast Asian tin belt and their relationship to Tethyan evolution. Gondwana Research 84: 20-37.

Ludington, S. 1981. The Redskin granite: Evidence for thermogravitational diffusion in a Precambrian granite batholith. Journal Geophysical Research 86: 10423-10430.

Mitchell, A.H.G. 1977. Tectonic settings for the emplacement of the Southeast Asian tin granites. Bulletin of the Geological Society of Malaysia 9: 123-140.

Ng, S.W.P., Whitehouse, M., Roselee, M.H., Teschner, C., Murtadha, S., Oliver, G.J.H., Ghani, A.A. & Chang, S.C. 2017. Late Triassic granites from Bangka, Indonesia: A continuation of the Main Range granite province of the South-East Asian Tin Belt. Journal of Asian Earth Sciences 138: 548-561.

Ng, S.W.P., Chung, S.L., Robb, L.J., Searle, M.P., Ghani, A.A., Whitehouse, M.J., Oliver, G.J., Sone, M., Gardiner, N.J. & Roselee, M.H. 2015a. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Geological Society America Bulletin 127: 1209-1237.

Ng, S.W.P., Whitehouse, M.J., Searle, M.P., Robb, L.J., Ghani, A.A., Chung, S.L., Oliver, G.J.H., Sone, M., Gardiner, N.J. & Roselee, M.H. 2015b. Petrogenesis of Malaysian tin granites: Part 2. High precision U-Pb zircon geochronology of the Malaysian tin granites and tectonic model for their emplacement history. Geological Society American Bulletin 127: 1238-1258.

Pérez-Soba, C. & Villaseca, C. 2010. Petrogenesis of highly fractionated I-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geologica Acta 8: 131-149.

Quek, L.X., Jamil, A., Ghani, A.A. & Saidin, M. 2015. Highly potassic melagranite of Bintang Batholith, Main Range Granite, Peninsular Malaysia. Current Science 108: 2159-2163.

Quek, L.X., Lai, Y.M., Ghani, A.A., Roselee, M.H., Lee, H.Y., Iizuka, Y., Umor, M.R., Pecha, M., Lin, Y.L., Rahmat, R. & Jamil, A. 2021. Peninsular Malaysia transitional geodynamic process from Gondwana to Pangaea: New constraints from 500 to 200 Ma magmatic zircon U-Pb ages and Hf isotopic compositions. Gondwana Research 94: 56-72.

Streckeisen, A.L. 1976. To each plutonic rock its proper name. Earth Science Review 12: 1-33.

Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins, edited by Saunders, A.D. & Norry, M.J. London: Geological Society. pp. 313-345.

Wang, Y.J., Qian, X., Zhang, Y.Z., Gan, C.S., Zhang, A.M., Zhang, F.F., Feng, Q.L., Cawood, P.A. & Zhang, P.Z. 2021. Southern extension of the Paleotethyan zone in SE Asia: Evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos 398: 106336.

Whalen, J.B. 1983. The Ackley City batholith, southeastern Newfoundland: Evidence for crystal versus liquid state fractionation. Geochimca Cosmochimca Acta 47: 1443-1457.

Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C. & Sun, D.Y. 2003. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67: 191-204.

Wu, T., Huang, Z., Yang, M., Zhang, D., Zhang, J. & Wei, C. 2020. Petrogenesis and tectonic setting of the highly fractionated Junye granitic intrusion in the Yiliu tungsten polymetallic deposit, Guangdong Province, South China: Constraints from geochemistry and Sr-Nd-Pb-Hf isotopes. Minerals 10: 631.

Yap, F.L. 1986. Age determination on the Kuantan granite and dolerite dykes. Bulletin of the Geological Society of Malaysia 20: 415-422.

Yu, Y., Qian, X., Mustapha, K.A., Sheldrick, T.C., Gan, C., Zhang, Y. & Wang, Y. 2022. Late Paleozoic–Early Mesozoic granitic rocks in Eastern Peninsular Malaysia: New insights for the subduction and evolution of the Paleo-Tethys. Journal of Asian Earth Sciences 239: 105427.

Zhu, D.C., Mo, X.X., Wang, L.Q., Zhao, Z.D., Niu, Y.L., Zhou, C.Y. & Yang, Y.H. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopes. Science China Series D: Earth Science 52: 1223-1239.

 

*Corresponding author; email: azmangeo@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next